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We present a new numerical method for the solution of partial
differential equations in nonseparable domains. The method uses a
wavelet—Galerkin solver with a nontrivial adaptation of the standard
capacitance matrix method. The numerical solutions exhibit spectral
convergence with regard to the order of the compactly supported,
Daubechies wavelet basis. Furthermore, the rate of convergence is
found to be independent of the geometry. We salve the Helmholtz
equation since, for variations in the parameter, the solutions have
qualitative properties that well illustrate the applications of our
method. © 1993 Academic Press, Inc.

1. INTRODUCTION

In this paper we examine the feasibility of applying
wavelet based numerical methods to the solution of par-
tial differential equations. Specificaily, we compare the
wavelet—Galerkin method to standard numerical methods
for the numerical solution of the biharmonic Helmhoitz
equation and the reduced wave equation in nonseparable,
two-dimensional geometry.

We use compactly supported wavelets as a Galerkin basis
and develop a wavelet—capacitance matrix method to
handle boundary geometry. We have developed an exten-
sion of the standard capacitance matrix method that greatly
reduces the numerical residual errors. In contrast with the
standard method, our method shows fast, even spectral,
convergence at relatively coarse levels of discretization.
Furthermore, for comparable levels of discretization the
rates of convergence appear to be independent of the
geometry. For several geometries we have made a detailed
comparison of methods, examining accuracy and rates of
convergence. We have also developed least-square versions
of our algorithm for the Helmholtz equation in non-
separable geometries and examined the accuracy and
convergence of these methods.

In Section 2 we present the wavelet—Galerkin method for
partial differential equations. To illustrate this discussion,
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several applications to nonlinear partial differential equa-
tions with periodic boundary conditions are reviewed. The
periodic wavelet—Galerkin solver is an essential component
of our method. We examine the rates of convergence of this
solver when applied to the Helmholtz equation.

In Section 3 we develop the wavelet—capacitance method
for solving partial differential equations in nonseparable
geometry. In Section 4 we then apply the method to the
numerical solution of the Helmholtz equation in two-
dimensional domains. Detailed results with comparison to
standard methods are presented for the L-shaped region.

We have also examined the use of symmetry in our
method. In Section 6 several useful results are presented
that can be developed to reduce the level of required
computation. In summary, our numerical study of the
Helmholtz equation shows that:

* The wavelet—Gailerkin/capacitance matrix method (the
wavelet—capacitance matrix method} is stable and spectrally
accurate. These resuits apply to general nonseparable
domains and all ranges of the parameters.

« The wavelet algorithm is found to obtain accurate
results for problems where, for instance, finite difference
methods do not converge, or converge slowly, and where
Fourier spectral methods do not apply.

+ For a fixed level of discretization, increasing the order
of the wavelet basis spectrally decreases the error.

» The rates of convergence in sup norm appear to depend
on the wavelet basis, DN, and discretization, éx, as (8x)" 5.

» The rates of convergence in sup norm appear to be
independent of the domain shape.

» Least-square versions of the wavelet algorithm can
preserve accuracy and decrease the computation by more
than a factor of four. The finite difference algorithms would
not allow effective least-square implementations,

Furthermore,

» All errors (accuracy and convergence) are measured in
the pointwise sup norm.
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* Our implementation is fast, since it is based on fast
(FFT) evaluations for periodic geometry adapted to
nonseparable geometry.

» The basic algorithm applies to one, two, and three
space dimensions, without essential modification.

* The wavelet—Galerkin method preserves symmetries of
the domain and defines a type of discrete orthogonality that
is very useful for further applications of the method. These
applications include fast domain decomposition techniques.

» To our knowledge, our algorithm is a unique extension
of the classical capacitance-matrix method and should have
several and diverse applications to problems requiring a
higher order accuracy.

2. THE WAVELET-GALERKIN METHOD

Compactly supported wavelets have several properties
that are quite useful for representing solutions of PDEs
{6, 10, 167. The orthogonality, compact support, and exact
representation of polynomials of a fixed degree allow the
efficient and stable calculation of regions with strong
gradients or oscillations. For instance, we have applied
wavelets to problems of shock capture. The general method
is a straightforward adaptation of the Galerkin procedure
with a wavelet basis [6, 10, 16].

The compact wavelets have a finite number of derivatives
and the derivatives, when they exist, can be highly
oscillatory. This makes the numerical evaluation of integrals
difficult and unstable. We have found methods for the
evaluation of functionals on wavelet bases [97]. Comparison
with standard numerical results demonstrates that these
procedures are critical for the wavelet methods, especially as
applied to nonlinear probiems.

2.1. Compactly Supported Wavelets

Ingrid Daubechies defined the class of compactly
supported wavelets [4]. Briefly, let ¢ be a solution of the
scaling relation

P(x)=3 a,0(2x—k).
k

The a, are a collection of coefficients that categorize the
specific wavelet basis. The expression ¢ is called the scaling
function.

The associated wavelet function ¥ is defined by the
equation

lb(x):Z(—l)ka‘fk(p(Zx—k].

The normalization | ¢ dx =1 of the scaling function obtains
the condition

2 ak = 2.

k
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The translates of ¢ are required to be orthonormal
[ ol—k) plx—m) =3,

From the scaling relation this implies the condition

N1
Z QRO 30y = O
k=0

For coefficients verifying the above two conditions, the
functions consisting of translates and dilations of the
wavelet function, y(2/x — k), form a complete, orthogonal
basis for square integrable functions on the real line, L?(R).

If only a finite number of the a, are nonzero then ¢ will
have compact support. Since

[ ety plx—mydx =Y (1) @, 8420 =0,

the translates of the scaling function and wavelet define
orthogonal subspaces

V,= {2J"f’2¢(2fx —mym=..,—1,01, },
W= {272/ x —m)ym=.., ~1,0, 1, .}

The relation

Vi =V, W,

/

implies the Mallat transform [4]
cV,

VDCVIC'” FES T

Vi =Vo@ W@ W, @ - B W,

Smooth scaling functions arise as a consequence of the
degree of approximation of the transiates. The conditions
that the polynomials 1, x, .., x?~ ! be expressed as linear
combinations of the translates of ¢(x — k) is implied by the
conditions

Y (=1 kma, =0

k
for m=0,1, .., p— 1. The following are equivalent results
[15]:

» {1, X, ... x?~!} are linear combinations of ¢(x — k).

s ST ae@x—k)<C2 | P,
| f(x) @(2'x — k) dx.

s fx"p{x)dx=0for m=0,1,.., p—1.

s [ SR Y@x)yde< e

+ L, where L, ;=a,,_, has eigenvalues 1, 3, ..., (3)*~".

where ¢,.=

For the Daubechies scaling/wavelet function DN we have
p=N/2.
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In Fig. 1 we see pictured an example of a compactly sup-
ported scaling function and its associated fundamental
wavelet function. By rescaling and translation we obtain a
complete orthonormal system for L?(R) which has sufficient
smoothness to also be a basis for H'(R). This wavelet
system then yields a basis for solution methods for second-
order elliptic boundary problems on intervals on the real
line. The illustrated example, which is due to Daubechies
[4], has fundamental support [0, 5]. For arbitrarily large
even N there is a Daubechies example of a fundamental
scaling function defining a wavelet family with fundamental
support in the interval [0, N—1] [4] Wavelet bases of
arbitrarily high order of smoothness can be constructed in
this way, but the order of smoothness is bounded by the
length of the support.

2.2. The Wavelet—Galerkin Method
For a PDE of the form

FU,U,.U,U.,, .)=0

define the wavelet expansion

U=Y Uep(x—k).

An approximation to the solution is defined by

N
U= Y Uiplx—k).
k= —

M

In effect, the solution is projected onto the subspace
spanned by

S(M, Ny={p(x—k): k=—M, ., N}

15 s ; . " L . . . "
0 0.5 1 1.5 2 25 3 3.5 4 4.3 5

FIG. 1. Daubechies’ scaling and wavelet functions for N=6 with
support on [0,57.
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To determine the coefficients of this expansion we substitute
into the equation and again project the resulting expression
onto the subspace @(M, N}. This uniquely determines the
ceeflicients {/,. Here we assume, without loss of generality,
that the integers represent the finest scale of variation and
the period scales with the number of translates. This
simplifies the relevant calculations and can be implemented
by a simple change of variable y = 2’x.
The projection requires U, to verify the equations

[* oty F0.0,, 0., .y dx=0

for k= —M, .., N. To evaluate this cxpression we must
know the coefficients of the form

_I.(P(x) (P.'((x_kl) e (Pxx(x—kz) cedx,

We have found exact methods for evaluating the func-
tionals required in the wavelet-Galerkin method. A typical
functional would be the three-term connection coefficient

Uk, j)= [ 0.u(x) @,(x ) plx —j) dx.

Since the scaling function used to define compact wavelets

has a limited number of derivatives, the numerical evalua-

tion of these expressions is often unstable or inaccurate.
The exact method is based on use of the scafing relation

N—1

Y a,0(2x—k).

k=0

p(x)=

By the obvious manipulations a system of equations is
found for the 2(%, j). The system of equations is generally
rank deficient (singular). The rank deficiency is cured and a
unique solution is obtained by the inclusion of an additional
set of linear equations that are obtained from the moment
equations. The resuiting system is non-singular and non-
homogeneous and has a unique solution that is easily found
by standard techniques. This technique is derived in the
recent paper by Latto, Resnikoff, and Tenenbaum [%].

We remark that some of the three-term connection coef-
ficients have magnitudes of the order of 1.e — 14. As will be
shown later, the smailler values contribute in an essential
way to the accuracy of the evaluation of the nonlinearities
in the Navier—Stokes equations.

Our original expansion is over the space dependence of
the solution. If the equation has a time dependence the
resulting equations for the 7, will be a system of ordinary
differential equations in ¢,

See Fig. 2 from [10] for examples of Burgers shock
capture at a Reynolds number of 2000, using the wavelet—
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Exact {x), smoothed and ensmoothed WG at time 5 Exact (x) and an unsmoothed WG at tirne 64

15 0.06 . .
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13 5 10 15 20 25 o % 20 40 80 80 100 120 140

F1G. 2. Comparison of exact {x) solution and wavelet—Galerkin approximation; on the left, smoothed and exact at time 5; on the right unsmoothed
and exact at time 64.

Galerkin method. The simpie three-point smoothing of the o
approximate solution is nearly exact and for large time

the approximation is nearly exact without smoothing. st |
We have defined the approximation of the solution in the
wavelet—Galerkin method by translates of the scaling func- 1+ .

tion. It is also possibie to define the approximation of the
solution by translates of the scaling function and associated 03
wavelet terms. It might be thought that the scaling func-
tion—wavelet expansions could produce different numerical
results. In Fig. 3 we show superimposed the results for
solving the Burgers equation with scaling function and
scaling function—wavelet translates. The results are not ;| .
distinguishable in this figure. Figure 4 shows the difference
of the solution produced by the two expansions. In general, -15f ]
to a tolerance the methods are identical.

-2 L i 1 1 1 L
o 10 20 30 40 50 60 70
2 T r r T T T - FIG. 4. Difference of scaling function and scaling function—wavelet
expansions for Burgers equation.
15F .
2.3, The Two-Dimensional Navier-Stokes Equation
1r 4
The two-dimensional Navier-Stokes equations in the
05r : iy stream function—vorticity formulation are
0r 1 Cr+‘1{lycx7¢’xcy=gAc
050 4 A= —c.
-1t ' 1 The velocity fieldisu=y and v= —,.
In applying the wavelet—Galerkin method to the
-L3F 1  two-dimensional Navier-Stokes equation in the stream
) ) ‘ , , ( , function—vorticity formulation
“o 10 20 30 40 50 60 0

_ e —c,=adc
FIG. 3. Comparison of scaling function and scaling function—wavelet ’
expansions for Burgers equation. Agb = —q¢,
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we expand and approximate the stream function and
vorticity in terms of the scaling function ¢ [16]:

Wiy, y)= Z 2 L Px— ) oy — k),
J=1k=1
Z Z rex— ) ely—k).
Jj=1 k=1

Since we assume periodic boundary conditions there is a
periodic wrap around in (x, y) and we let the period scale
with the number of terms in the expansion. This allows
neglect of the dilation factor in the scaling function.
Substituting into the equation and projecting the result onto
the subspace spanned by {p(x—j)o{y—k): j=1,., N;
k=1, .., N} requires evaluating terms of the form

[ @uxl) 0,06~ ) ol — k) dx.

This uniquely determines the ¥, , and C;, as solutions of
the wavelet-Galerkin ordinary differential equations.
Define the connection coefficients

Q%= p(x) ¢ (x— ) dx

Q= f 0. (x) o{x— j) @(x —1) dx

Q% = [ o(x) o(x — k) @ (x—m) dx.

With the summation convention on the indices

(4. J, 1, k, m) the wavelet—Galerkin equations are

Cipg}+Cli+pk+q)¥ll+p.m+gq)
X (2,7°Q0, — QT2
=o(QPC(+ p, q)+ 2V C(p, k+q))

and

Clp, q)=—Q2F¥(j+ p,q)—QV¥(p, k+q).

The Jacobian. The wavelet-Galerkin expansion of the
nonlinear, Jacobian term @ can be expressed in a compact
form [167]. Let € and ¥ be the matrices of coefficients for
the vorticity and the stream function. Let & and J be the
{#m, m) matrices of coellicients that depend on the wavelet
basis. In our case, these are 2'® and Q™' Let &(p, g) and
P(p, q) be, with periodic wrap around, the (s, m) matrices

SB1/106/1-11
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with entries from € and ¥ centered on the (p, ¢) element.
Then the evaluation of the (p, g) element is of the form

m N
Op.q)=3 ¥ H(p g
i=1k=1
where
Hip, qy=0C(p, q)* ®(p, q) I - JC(p, q) * ¥(p, q) Q2

and -* is the term by term product for matrices.

The wavelet~Galerkin operator @ depends on the
vorticity and stream function fields and is a conservative
approximation to the Jacobian of these fields. It can be
easily shown, using the orthogonality of the translates of the
scaling function and the properties of the Jacobian operator
that,

ZZC%

Y'Y ¥(p, q) Op, q)=0.

P g

)O(p,q)=0

These relations directly imply that the wavelet—Galerkin
approximation of the Jacobian will conserve both vorticity
and energy.

In comparison to the additional required operations, the
speed of evaluation of the nonlinear Jacobian terms for
these equations determines the speed of execution of this
algorithm. Therefore, we seek to minimize the floating point
operations required to evaluate these terms.

The unoptimized evaluation of these expressions requires

(4m® 4+ 3m?) N*?

floating point operations for a complete evaluation of the
nonlinear terms.

We have found an initial optimization (fast algorithm)
that calculates the complete nonlinear interaction in

15m° N>+ 10m° N 4+ 3m + 2N

floating point operations. This fast aigorithm is based on a
simple recursion relation retating H(p, q) to f{(p —1,q)
and H{p, g—1).
The initial optimization is based on the following obser-
vation. If we know Q2C(p, g) then
QC(p,g+1)=

Q{Cip,q) D+S(p, g+ 1)},

D is the matrix that shifts the columns to the left by one
column and assigns the null column to last one and
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The 1-0-0 Scaling Function Connection Coefficients: D6,
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The 100 Connection Coefficients: D10.
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FIG. 5. The 100 D6 and D10 scaling function connection coefficients.

S(p, g+ 1) is the matrix with null columns except the last
one which is the last column of C{p, ¢+ 1). This process
reduces the evaluation of QC(p, g+ 1) to shifts and one
matrix—vector multiplication. Using symmetries of @ and
the form of the nonlinearity the operations count can be
further reduced.

Beyond the evalvation of each noniinear term, the num-
ber of nonlinear terms to evaluate depends on the form of
the equation under consideration. For instance, the stream
function form of the 2D Euler equation requires the evalua-
tion of a factor of three more nonlinear terms than the
vorticity form of the 2D Euler equation. For this reason it
is important to consider optimizations with respect to the
equation formulation and wavelet basis. This optimization
shouid consider both the speed of execution and the
accuracy of the result.

For the Daubechies six-term scaling function (D6), m=9
and the vorticity formulation requires 5,443,355 operations
when ¥V =64. For D8, m =13, and N = 64, the vorticity for-
mulation requires 11,789,607 operations. For comparison
the de-ahiased FFT evaluation requires 5,881,935 opera-
tions when N=64. Thus, the wavelet vorticity based
algorithm with D6, as currently developed, is faster than
the dealiased FFT algorithm (that uses shifted grids to
eliminate aliasing terms) {3].

In the operation count given above the most important
term is 1572N 2 Of this 4m?N? operations are required for
initializations and is irreducible; 11m2N? operations are
required to complete the evaluations and these arise from
the product of connection coefficient matrices £ and a data
vector 8, (28. However, approximately 40 % of the entries of
£2 are null.

Figure 5 shows a contour plot of the connection coef-
ficient matrix £2'% for the six- and ten-term Daubechies
scaling functions. There are many terms with nonzero yet

small magnitude. The smallest nonzero terms in the
ten-term case have magnitudes of the order [.e— 15,

By not multiplying the components of 2 that are null the
11m*N? operations can be reduced to approximately
T N? operations. We have implemented this procedure,

It might seem that, given the magnitude of some of the
terms in 2'% a considerable further improvement in the
reduction of operations could be achieved by not multi-
plying terms whase connection coefficients are smaller than
a prescribed tolerance. To investigate this, we have filtered
the connection coefficients te a prescribed tolerance and
found the effect of this on the accuracy of the evaluation of
the Jacobian nonlinearity. The results are shown in Table 1.
In general this procedure does not seem to be warranted.

TABLE 1

The Effects of Filtering Connection Coefficients on the Accuracy
of the Jacobian Nonlinearity Evaluated Using D10

Tol Max. error Number of terms
le~20 121732 —13 217
le—16 12173e—13 217
le—15 1.2173e-13 214

l.e-14 2.1079%-12 212
1e-13 1.5502¢-12 208

le-12 1.9641e-11 202
le-11 1.1209¢-8 182
1.e-10 1.3423¢-8 173

1.e-9 3.5131e-8 159
.e-8 1.1877e-6 149
le-7 1.5887e-5 130
le-6 1.9740-4 117
l.e-5 1.8000e-3 92
te-3 2.9560e-1 51

Note. There are 217 nonzero coefficients,
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The Laplacian. The relationship of the vorticity and
stream function fields is described by the following matrix
equation [16]

C=-QV—-V¥Q,

where Q is a circulant matrix whose rows are periodically

shifted copies of the two-term connection coefficient vector
QOZ

Q=Circ{90, Q],... Q 0, aney O,Q

H F:&l

H ‘-‘39 1}!

—n —

where
Q= J @(x) @ (x—j)dx.

Note that 2 = Q"
All circulant matrices commute and have a common set
of eigenvectors. In effect, 2 can be diagonalized by

161
where N =2m
D, =diag{i;}

d 2rjk
ii=Qy+2 Y Q,cos (—1;—)

k=1

and

S

12 1 - t
]/\/5 ;e Cont

2 ey o

172 0 0
-2 sl s

Comixn=1y — VN2 Sem—rgv—n) 0 Sevon

where ¢;=cos(2mj/N) and s;=sin(2rj/N). We note that

Q=0 Dyd, PP =1,
x1Q'¢ Total energy for steps 0 to 7500 Total ensuaphy for steps 0 to 7500
2.45 T T — T - T 7500 T T . T T T —-
24471 i
7000+ b
2431 B
6500 b
242+ 4
241} { 600p ]
241 | 55001 1
2391 L
5000 b
2381 N
4500+ . b
237 J
2.36| R 4000 1
2.35 ' : s ’ : ’ : ‘ . . . ‘ . -
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x107 Total gradients for steps 0 to 7500
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15}) ]
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05F i
0 L L L " L i I
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FIG. 6. The evolution of energy, enstrophy, and the gradients of vorticity.



162 QIAN AND WEISS

-0

60

= i
—— =
e

T

H =

Lol

Vorticity at step 2
I 7 [ i
1208} 7 ;
NS N Y =—-
= e i - ==

e vorticity, times 8§00 through 3500.



WAVELETS AND NUMERICAL SOLUTIONS OF PDES 163

In terms of the above the wavelet-Galerkin Laplacian is
inverted to solve for the stream function ¥,

¥ = BB, \(D'CD)) D',

where .\ is the componentwise division operator and

1 1 -1 11 -1
Bo=Dol: : -~ ]+ ¢ - Dy
1 1 -1 Il e

This procedure has been implemented using the fast Fourier
transform.

Some Numerical Results. We find the wavelet-based
algorithms are considerably more stable for high Reynolds
number flows. This allows the above iterative implementa-
tion of implicit time stepping methods for the Euler flow

[16].

As described in [16] we integrate the Euler equations

with backward-Euler time differencing

(Crf+l _Crz)/d‘f+J(Cn+J’ l“bn+l}:0
Awn= —Cys

and a D6 wavelet—-Galerkin spatial discretization. The
backward-Euler differencing does not conserve the energy
or the enstrophy. However, it does strongly damp the high
frequency components of the solution. This makes back-
ward-Euier differencing quite useful for inviscid calculations
since without the specific inclusion of viscosity it tames the
small-scale terms near the resolution cutoff.

At each time step we solved the implicit difference scheme
by iteration

Vi1 =Cp—dt - J(v,, 47 v))

20 40 0 80 100 120

FIG. 8. The evolution of the vorticity, times 4600 through 7500.
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Fig. 8—Continued

until

sup lv;, , —vl <.
In this experiment ¢ = l.e — 3, df =0.025, and the maximum
initial vorticity has a magnitude of 1.4017.

We integrated the equations for 7500 time steps of
magnitude 0.025. In this period of time the solution under-
goes a sharp transition from an unstable steady state
toward, to what appears to be, a stable, steady state
solution. During this period of time the algorithm
approximately conserves energy while transferring about
one-half of the enstrophy out of the solution. The related
gradients of vorticity are largest just before the event
transferring the vorticity occurs.

Figure 6 shows the evolution of energy, the evolution of
enstrophy, and the evolution of the gradients of vorticity.

Figures 7 and 8 show the evolution of the vorticity field.
We show a field produced by a three-point smoothing in the
x and then the y directions. Even though the numerical
solution has a considerable oscillatory component, the
tensor product three-point smoothing produces a consistent
and smooth result.

2.4, The Periodic Helmholtz Equation

Before considering the Helmbholtz equation in non-
separable geometry, we examine the degree of approxima-
tion of the wavelet—Galerkin method applied to the periodic
problem (the Helmholtz equation on a torus),

(—d+a)U=F.
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3. THE WAVELET-CAPACITANCE MATRIX METHOD

We will describe the method for the harmonic Helmholtz
equation

(—d4+a)U=F

in a domain D with boundary conditions U= g on the
boundary of D. One version of the direct method is
equivalent to a numerical implementation of the single layer
potential [14]. A method based on the double layer poten-
tial is also a possibility [13]. The algorithm is based on the
calculation of a numerical partial Green’s Function [14].

The outline of our method is as follows. Regard the
domain D as contained (embedded ) in a periodic cell, S. We
extend F from D to § in a smooth way. The extension F is
periodic on S. We also define a periodic function p, where
p is zero except on the support of 8D < §. We determine j
so that the periodic solution in S,

(—d+a)U=F+p,

will verify the boundary conditions U=g on éD. By
construction the equation (—A4 + «) U= F is satisfied in D.

One advantage of this method is the use of fast and
accurate periodic solvers to evaluate the solution. Another
advantage is the efficient inclusion of general non-separable
geometries without special case treatments. A possible
disadvantage is the use of functions that are singularly sup-
poried in 8. This can lower the accuracy of the numerical
solution through Gibbs’ phenomena and boundary residual
eITOTS.

We have extended the method by allowing the support of
# to be separate from the boundary of D, dD. When the
equations are discretized by the wavelet-Galerkin method,
this extension eliminates the boundary residuals and defines
a spectrally accurate method for non-separable domains, To
our knowledge this algorithm is the first implementation of
its type. We will present an extensive series of numerical
calculations that support our conclusions about accuracy
and convergence.

The numerical implementation is straightforward. In
effect, we expand the solution in periodic, wavelet—Galerkin
basis

U=} Y U olx—i)o(y— )

where ¢ is a scaling function, To calculate the Green’s
function we resolve the delta function in the space of
translates of scaling function

A% V) =2 % @lxo— 1) @lx—i) @(yo—J) @y —J).

QIAN AND WEISS

Since the translates of the scaling function are orthogonal
and complete in L7 the above expression implies that for
the Galerkin approximation, f, of a square integrable
function, {,

f(xoa .VO) = J:f dx dy )'xg,yo(xa _}’) f(xs y),

which is the definition of the delta function 1n this subspace.
Therefore, we solve, by the wavelet—-Galerkin method
[16], the equation

(—d+a)G(x, xg; ¥, yo) =244 W% V)

for the partial Green’s function, G. To find the usual
capacitance matrix, C, we discretize the boundary into a
series of points X; and form the matrix whose (i, /) compo-
nent is G(xX;, X;). The evaluation of G requires only one
solution of the periodic, fast, wavelet—-Galerkin solver [13].

In our formulation of the algorithm, we discretize the
boundary by the points ¥; and the support of g in S by the

points ;. The definition of the capacitance matrix is then
C:,j= G(ﬁra f;)

Depending on the cardinality of the sets £ and 7, the system
of equations for the discrete potential g are determined,
overdetermined, or underdetermined. We have examined
these possibilities and will present the results in this paper.
In general, if § is exterior to X, we obtain excellent numerical
results that depend stably on the choeice of y.

In terms of the (extended) capacitance matrix, the
discrete potential of a single layer is a solution of the system

For non-determined systems we use a singular value
decomposition of C to find the least square or minimal
norm solution [7].

For a specified geometry the capacitance matrix can be
inverted once and for all and when g is extended from the
discrete support to the periodic domain {equal to zero at
non-support points), the solution of the Helmholtz equa-
tion with boundary data g is found by one fast, periodic
wavelet—Galerkin solution. As deseribed in [13, 147 the
general inhomogeneous case reduces to this homogeneous
problem.

The primary advantage of the direct method in
comparison to the iterative methods is that the (discrete)
boundary conditions are satisfied identically, and the
method works near the resonance cases encountered in the
solution of the Helmholtz equation. For domains that
require many points for their discretization, the direct
method could become impractical. We suggest that in these
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cascs a fairly sparse selection of source points j in the direct
method can effectively initialize an iterative (conjugate-
gradient) method (even near resonance).

4. NUMERICAL RESULTS FOR THE
HELMHOLTZ EQUATION

In this section we have examined the numerical solution
of the Helmholtz equation

(—d+a)U=F

in an L-shaped two-dimensional domain. The domain has
sides of length 64, We examine solutions with «=
—3,0,0.3, 3. Normalized to a side of length 1, 2 = — 12288,
0, 1228.8, 12288, In terms of the spectrum of the discrete
problem, these are mid to high frequency solutions. The
boundary data is proportional to sin(2zx) and sin(4nx).
The domain and boundary data are shown in Fig. 11.

We have also examined solutions in domains that are
rectangies, triangles, and combinations of both. The results
closely parallel those for the L-shaped region. In fact, for
domains of similar area, we have found that the rates of con-
vergence appear to be independent of the shape. Therefore,
the results for the L-shape region apply to a diverse
collection of regions.

The primary factor that controls the rate of convergence is
the numerical resolution of the singular function p.

Therefore, to examine the convergence it is enough to
assume that the smooth function £=0.

The term N128D 16 will indicate a solution with a dis-
cretization with & = 128 and basis D 16. The term N 128FD
indicates a solution with discretization 128 found using
finite differences.

We place the support of 5 at a distance from the
boundary that is equal to the support of the basic scaling
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function. Therefore, the offset for N128D 16 is equal to 15
units exterior to the boundary.

Except where noted, the discrete residual and boundary
errors for the wavelet method in D U 0D are found to be small
to the order of double precision roundoff error, 1.e — 12.

Again, we use the pointwise sup norm (not the L* norm)
to measure the error in this paper. The L? norms are quite
smaller. However, the sup norm provides a better measure
of the error and related convergence.

4.1. The Hyperbolic, or Indefinite, Case: a = — 12288

We consider discretizations of size N =64, 128, 256, 512
and scaling functions corresponding to the 16, 20, 24, 28,
and 32 Daubechies scaling functions. That is, D16, D20,
D24, D28, and D32. Figure 12 shows the contour and mesh
plots of the solution with boundary data proportional to
sin(27x). Figure 13 shows the contour and mesh plots of the
solution with boundary data proportional to sin{4nx).

Spectral convergence, N=064. The boundary data is
proportional to sin(2nx). For this problem the N =064
discretization is coarse. We consider the solution for several
scaling function bases. The data is as follows:

o (N64D20 - N64D 16] =0.2514;
- IN64D24 — N64D20| = 0.0815;
¢ [N64D28 — N64D 24| = 0.0256;
« |[N64D32 — N64D28| = 0.00799.

The ratic of the above numbers indicates the rate of
convergence., We find that;

. [ N64D20— N64D 16]|/| N64D24— N64D 20| =3.0861;
o IN64D24— N64D 20|/ | N64D28 — N64D 24| =3.1772;
o [N64D28— N64D24|/|N64D32— N64D 28| =3.2084.

FIG. 11.

The domain and boundary data for the numerical solutions of the Helmholtz equation.
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The ratio of the above numbers indicates the rate of
convergence. We find that:

+ 38.62;

« 37.19;

« 3441,

Therefore, we see spectral convergence at a fairly large
constant rate for a moderate level of discretization.

Spectral convergence, N=256. The boundary data is
proportional to sin(2nx). The discretization N = 256 is well
resalved for most scaling functions and shows a rapid
spectral convergence as the order of the basis function is
increased. The data is as follows:

. |N256D12 — N256D8]| = 0.0058;

e |N256D16— N256D12) = 1.0369¢ — 4;

= |N256D20— N256D 16| = 6.4439¢ — 8;

o |N256D24 — N256D20| = 3.61782 —8.

The ratio of the above numbers indicates the rate of
convergence. We find that:

. N256D12 — N2S6DS|I/|N256D 16 — N256D12] =
55.8741;

« |N256D 16— N256D12|/|N256D20 — N256D 16} =
1.609¢ + 3;

+ {|IN256D20—N256D16|/| N256D24 — N2567D20| =
L7811,

Therefore, we see that the rate of spectral convergence
increases with the level of discretization,

Convergence with discretization. The boundary data is
proportional 1o sin(2xx). We examine the convergence
while increasing the discretization from 128 to 256 to 512
and keeping the D12 basis fixed. The results are:

» [|N256D12 — N128D12] =0.006294,
» [N512D12-N256D12)) = 1.03564e — 4.

The factor of convergence is
|N256D12 — N128D 12|/|N512D 12 — N256D 12| = 60.76.

We examine the convergence while increasing the
discretization from 128 to 256 to 512 and keeping the D16
basis fixed. The results are:

. [N256D16— N128D 16| = 1.6322¢ —4;
« |NS12D16— N2S6D 16| = 4.72282¢ — §.

The factor of convergence is

3456.1.
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We examine the convergence while increasing the
discretization from 128 to 256 to 512 and keeping the D20
basis fixed. The results are:

= |N256D20— N128D20| =4.42611e —6;

* ||[N512D20— N256D20| = 3.68687¢ — 8.

The factor of convergence is
120.05.

The lower factor of convergence is a consequence of the
near convergence of the solutions with basis D20 and
discretization 256. We note that

INS512D20 — N512D 16| = 1.81344¢ — 8.

We compare the higher level of discretization with the
lower level of discretization and higher scaling function
basis. The data is as follows:

« |[N128D 16~ N256D12| =1.5611e — 4;
IN128D16 ~ N512D 12| = 1.6306e — 4;

IN128D20— N256D12]| =2.1044e — 5;
IN128D20 —~ N512D12|| =4.4783¢ — 6;
[N64D32 — N512D 12| =0.00365;

IN256D16 - N512D 12| =6.1162¢ —7;
» |N256D20 - N256D 16 = 6.4438e — 8.

»

&+

The above demionstrates the consistency af the various
approximations and rates of convergence. Generally, it is
much less expensive to increase the order of the scaling
Sfunction than to increase the order of the discretization,

Empirically, the various rates of convergence for basis
DN are approximately proportional to

(6x)V 2,

Convergence with finite difference methods. We examine
the convergence of the standard five-point finite difference
implementation of the capacitance matrix method. This
algorithm is described in detail in Vallis er al. [14]. The
boundary data is proportional to sin(2nx). We consider
discretizations of size N = 128, 256, 512. For a given level of
discretization the computational cost of finite difference and
wavelet implementations is practicaily identical. The data
for the five-point finite difference method is as follows:

« |N256FD — N128FD| = 5.539;
« IN512FD — N256FD| =0.759105.

The boundary and residual errors are:

« N = 128, Boundary error = 2491e — 5, Residual

Error =7.304e — 5;
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+ N = 256, Boundary error = 2.729¢ — 4, Residual
Error=2921e— 5;

« N = 512, Boundary error = 3.103¢ — 12, Residual
Error =9.2618¢ — 12.

We compare wavelet and finite difference discretizations:

» |N128FD — N128D12)| = 2.7576;
« |N256FD - N256D 12| = 0.9232;
« | NSI2FD — N512D12) = 0.16639.

We compare maximum values of the solutions:

* | N128FD| = 3.0885;
+ |IN256FD| = 2.8136;
* [[NSI2FD| =2.2259;
= |INI2BD12| = ||N256D12|| = |[N512D12) =2.1212.

From the above it is obvious that for comparable levels of
discretization and computational cost:

» The wavelet — capacitance matrix method converges
spectrally.

» The standard finite difference capacitance wmairix
method converges, at best, marginally.

We have considered the effect of offsetting the sources
from the boundary on the accuracy of the five-point finite
difference solution. This produced no measurable effect.
That is, the offset and non-offset solutions were practically
identical.

Higher order finite difference solutions. We have also
considered the effect of using a higher order finite difference
approximation on the accuracy of the solution. The five-
point approximation of the Laplacian is accurate to order
{(8x)*. We use the nine-point approximation that is accurate
to order (dx)*.

Withour offsetting the results were worse. With offserting
the convergence results improved. That is,

« |U128FD — U64FD]| = 3.8190;
« |U256FD — U128FD| = 02273,

This is a good improvement over the standard five-point
finite difference results. However, it 1s far less accurate than
the comparable wavelet results.

We have examined the spectral convergence of a sequence
of higher order finite difference approximations for the
Helmholtz equation. These are described in Milne [12] for
the Laplacian operator. We use offsets of sources that are
equal to the supports of the difference operators. These
approximations for the Laplacian operator are of order
(6x), k=2, 4, 6, 8, respectively. The approximations are
exact for polynomials of degree 3, 5, 7, 9, respectively. In
this regard, they correspond to the wavelet—Galerkin
approximations for basis P8, D12, D16, D20, respectively.
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We use a discretization of 256 and the notation N256FDM
indicates a finite difference solution with discretization 256
and order M. The results are:

o |N256FD4 — N256FD2| = 0.917:
o |N256FD6— N256FD4| = 0.0149;
« [N256FD8— N256FD6| = 0.00043567.

The convergence factors are 61.5 and 34.20.

For a comparable degree of approximation, level of
discretization, and computational cost, the wavelet—Galerkin
solutions have converged faster by several orders of
maghnitude.

Least-square wavelet methods, We consider solutions
with one-half the number of sources in 6 and the same
boundary discretization and data as shown previously and
compare the two solutions. In effect, this procedure trans-
forms the equation for g from an underdetermined system
into an overdetermined system, The minimal norm solution
found by singular value decomposition becomes the usual
least-square solution.

The notation N 128D 12/2 indicates a sotution witha D12
basis, a discretization of 128 points on a side, and 64 source
points on a side. The results are:

. |N128D12—N128D12/2] = 6.7¢ — 6;
e |N128D16— N128D16/2( = 6.72¢ — 8;
« |N128D20 = N128D20/2)| =2.18¢ — 8.

The least-square solutions are, 1o a tolerance, identical to
the full source solutions.

This argues for a certain stability in the algorithm and
suggests a new approach to reducing the level of computa-
tion while preserving accuracy. We are investigating this
further.

Domain shape, boundary data, and rates of convergence.
We have examined full source and least-square solutions for
the L-shape, T-shape, box, triangle, and wedge. We have
considered boundary data of the form sin(2wxx) and
sin{4nx). Surprisingly, the rates of convergence appear to be
independent of domain shape, boundary data, and method
{over- or underdetermined systems). The common rates of
convergence depend on the scaling function basis and the
level of discretization. For a basis DN and discretization dx,
the empirical rate of convergence is proportional to
(6x)~~°. We are investigating this further.

4.2. The Elliptic, or Definite, Case: 0 = 12288

Figure 14 shows the mesh plots of the solution with a =0
and o =1228.8. Figure 15 shows the mesh plot for a=
12288. Since the results are qualitatively similar, we will
describe the case o = 12288 only. In ail cases the boundary
data is proportional to sin(4n.x).
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alpha=0, nu=4

alpha=0.3, nu=4

e l'|'!
(R
I

FIG. t4. The mesh plots of the solution with & =0 and x=0.3.

Spectral convergence, N=128. The results are:

« [N128D8 — N128D6} = 0.0281;

« |N128D10— N128D8) = 0.008959;
. |N128D12 — N128D10| = 0.005271;
« [N128D 14— N128D 12| =0.00103.

The convergence factors are:

« 3.137;

.« 1.6997;

» 51175

Spectral convergence, N =256. The results are:

+ IN256D16— N256D12] = 5.2115¢ — 5,
- |N256D20 — N256D 16| = 2.8523¢ - 6;
+ IN256D24 — N256D20] = 4.5015¢ — 6.

D24 Helmhgltz Equation, alp = 3

FIG. 15. The mesh plot of the solution with a =3,

For both discretizations the spectral convergence is
limited by the elliptic nature of the equation. That is,
consistent with the maximum principle of the solution, the
magnitude of sources offset sufficiently far from the
boundary grow rapidly. Large source values negatively
effects the residual and limits the reduction of error possible.
This timitation does not appear in the Avperbofic problem.

Spectral convergence for the elliptic problem is limited by
the maximum principle.

Convergence with discretization.  The results are;

. |N256D12—N128D 12| =0.0073914;
. |INS12D12— N256D 12| = 4.7080¢ — 5.

The convergence factor is 156.99.

The convergence with discretization for the elliptic problem
is faster than that for the hyperbolic problem,

Some further relevant comparisons are:

o |N512D12— N256D 16| =5.2044¢ — 6;
« |IN512D12 — N256D20| = 3.5602¢ — 6.

Convergence with finite difference methods. We examine
the convergence with discretization of the standard five-
point finite difference implementation. The results are:

. |U256FD — U128FD| = 0.008;
o |USI12FD — U256FD| = 0.0021.

The convergence factor is 3.8095 which is close to the
theoretical (optimal) value of 4 with second-order accuracy.

We have also implemented a fourth-order accurate finite
difference version of the algorithm. The convergence factor
in this case is 1.7. This is less than one haif of the second-
order value and illustrates the negative effect of boundary
residuals on the convergence. In effect, the lower order
method will converge faster,
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FIG. 17. Several domains in the periodic cell that have the symirnetries of the square.
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Furthermore, we find that, after discretization:

« The Helmholtz operator, acting on subspaces,
preserves orthogonality. That is, (/) L J, H (1) L H (J)
for I#J.

* The orthogonality structure is independent of the
parameter, o That is, Hy(lp} L J,, Hg(ip) L H,(J,) for
FE WA

* The discrete orthogonality structures are independent
of the scaling function basis used in the wavelet-Galerkin
discretization.

Furthermore, the subspaces have an element-wise
product structure. The non-orthogonal triple products are:

113 223 333 443
551 552 553 554
124

The non-orthogonal fourth-order products are

1111 2222 3333 4444 5555
5511 5522 5533 5544

5512 5513 5514

5523 5524 5534

1122 1133 1144 2233 2244
3344 1234

Non-orthogonal means that the sum over the elements of a
field does not vanish, For instance, the product of two fields
in subspace | belongs to subspace 3, etc. All subspaces are
closed under odd-order self-products. Except for space 5, ali
even-order self-products belong to space 3. The fields in
space 3 have non-zero mean. The remaining spaces have
zere means. Space 5 contains the fields associated with the
double eigenvalues of the capacitance matrix.

D12 ts Eigenstaze, Space 2
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The symmetries of the square are directly related to each
subspace:

+ Fields in space 3 are invariant under rotations of the
square, S, by 90°.

« Fields in space 1 are invariant under rotations of S by
180° and reflections in the centerlines.

« Fields in space 2 are invariant under rotations by 90°
and reflections in the diagonals and centerlines.

* Fields in space 4 are invariant under rotations by 180°
and reflections in the diagenals,

« Fields in space §, Fs, are transformed into —F; by
rotations of 180°,

Figure 18 shows two fields in subspace 2. The symmetries
are clearly visible.

Finally, the size of the (N, N) capacitance matrix, for a
uniform discretization of the boundary of the square by N
points, occurs in two series, N=8k -4 and 8k for
k=12 ..:

» For N=8k—4, the five spaces {1,2,3,4,5} have
{k,k—1,k k—1,4k -2} elements,

+ For N=8k, the five spaces {1,2,3,4,5)}
{k,k—1,k+1, k, 4k} elements.

have

Applications.
include:

Potential applications of these results

« Reduction of capacitance matrix to block diagonal
form.

+ Systematic and stable offsetting of sources with spectral
accuracy (residuals, convergence).

« Definition of high accuracy wavelet element for domain
decomposition and the solution of nonlinear systems
{Ginzburg-Landau, Euler, Navier-Stokes systems).

TS

3

-

2
!o

i
(Cad,

2

=] O 50 el o X =

FIG. 18. Two ficlds in subspace two, associated with ¢igenstates of the capacitance matrix for the square.
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For instance, the nonlinear systems of the nonlinear
Schrodinger or Ginzburg-Landau type are generically
important in the physics of modulated waves:

(—A4+vD)U+aU+|U>U=0,
(—A+vyDH U+alU+ U U=0.

Substituting U/ = ¥e™, we obtain a nonlinear extension of
the Helmholtz equation,

(—d+a) ¥+ ¥>=0.

All operations in this equation preserve the subspace (sym-
metry) structures. We could apply to this system a Galerkin
method with fields determined by the capacitance matrix as
a basis.

7. SUMMARY

The capacitance matrix method is a fast and the general
method for solving boundary value problems in nonseparable
domains. It uses fast periodic solvers based on the FFT to
drive direct or iterative (conjugate gradient) algorithms.
The geometry at the boundary is enforced by potentials with
singular support on the boundary. The use of functions with
singular support effectively restricts the capacitance matrix
method to low order solvers, requiring a high level of dis-
cretization to produce accurate results. Due to boundary
restduals, the introduction of higher order solvers can cause
the rate of convergence to become worse. For problems with
complicated geometries this fact limits the applicability of
the method.

By combining a reformulation of the capacitance matrix
method with a wavelet discretization, we have defined a
wavelet—capacitance matrix method. This allows the use of
higher order approximations with rapid (even spectral)
convergence and produces highly accurate solutions for low
to moderate levels of discretization. In effect, we have
freed the capacitance matrix method of its most serious
limitation, while retaining all of the method’s advantages.

Our numerical results are for the biharmonic Helmholtz
{thin piate) and reduced wave (acoustic) equations in
two space dimensions. For low to moderate levels of
discretization, accurate solutions were found throughout
the parameter range and for several nonseparable domains,
Surprisingly, the rate of convergence for our method
appears to be independent of the domain shape. Therefore,
the results presented here are fairly representative. The
method applies equally to equations with three space
dimensions and problems with a time dependence. For
instance, we have already applied the method to the long
time integration of Euler flow, with excellent results.

581/106/1-12
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The symmetries of the operator and domain are preserved
by our method. For domains with a high level of symmetry,
this allows the accurate numerical resolution of discretely
orthogonal spaces that block diagonalize the operator in
these domains. These results have interesting applications to
domain decomposition, since they allow the definition of
highly accurate waveler elements that should be simple to
match across element boundaries. The product structure of
the orthogonal spaces is useful in the numerical solution of
nonlinear systems.
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